
Theor Chim Acta (1993) 86:269 278 Theoretica
ChimicaActa
© Springer-Verlag 1993

On the number of square-cell configurations

Wolfgang R. Miiller 1, Klaus SzymanskP, Jan V. Knop ~, and Nenad Trinajsti~ z
1 Computer Centre, The Heinrich Heine University, 4000 D/isseldorf, Germany
2 The Rugjer Bogkovi6 Institute, P.O.B 1016, 41001 Zagreb, Croatia

Received December 27, 1991/Accepted December 7, 1992

Summary. The numbers of simply and multiply connected square-cell configura-
tions are computed. The computation is based on the original algorithm for
constructive enumeration of animals which is founded on the DAST (dualist
angle-restricted spanning tree) code.

Key words: Square animals - Animal code - Constructive enumeration

1. Introduction

Recently in this journal Harary and Mezey [1] reported a study on similarity and
complexity of shapes of square-cell configurations. Another name for these
configurations is square animals [e.g., 2]. A square animal is made up of squares
which are simply or multiply connected [3, 4]. It starts with a single square and
grows by adding squares one at a time in such a way that the new square has at
least one side in contact with a side of a square already present in the animal.
Square animals are simply connected if they have no holes, whilst multiply
connected square animals are configurations with holes (Harary and Palmer [2]
called them holey animals). The smallest hole is of the size of the square. In Fig.
1 we give as examples a simply connected square animal with 8 squares and a
multiply connected square animal with 10 squares.

Statistical properties of square animals and their embeddings in square
lattices are important in modelling a variety of physical problems such as the
thermodynamic properties of polymers in dilute solution [5-9] and for character-
izing shapes of two-dimensional solids and molecular aggregates on the surfaces
of catalysts [e.g. 10].

I
B

A

Fig. 1. A simply connected square animal with 8 cells
(A) and multiply connected square animal with 10 cells
(B)

270 W . R . Miiller et al.

The problem is to find the number of different square animals with n-squares
[2, 11]. Two or more square-cell configurations which can be transformed into
each other by translations, reflections or rotations in the plane are regarded as
the same animal. This problem of counting square animals belongs to the
celebrated, but difficult, cell-growth problem [2, 3, 11, 12] or polyomino problem
[13-15].

The question concerning the exact number of square animals of a given finite
cell number n is an "old" problem. It was listed by Harary in 1960 in his article
on unsolved problems in the enumeration of graphs [11]. In this article he has
also given the counting series for the simply connected square animals with up
to 7 cells: x + x 2 + 2x 3 + 5X 4 "q- 12X 5 + 35x 6 -F 107X 7. A few years later (1964)
Harary has published in his book on applied combinatorics the counting series
for the lower simply and multiply connected square animals [16]. Since we are in
the position to provide the numbers and shapes of animals with a given number
of cells [17], we will give here the numbers of square animals for larger values of
n.

We have recently developed an algorithm for the constructive enumeration of
hexagonal animals [18], which is based on the DAST (dualist angle-restricted
spanning tree) code [19, 20]. It appears that the DAST code can be used with a
slight modification for representing square animals. At this point we mention
that the constructive enumerations for each finite n can also be accomplished by
the Hara ry -Mezey code [1], but we decided to use our code because the
preliminary results based on it were already available.

2 Definition of the DAST code for square animals

The name "polyomino" (generalization of domino for square counts other than
2) shall in the following stand for planar square animal, i.e. a square-cell
configuration which describes a finite edge-connected subset on an unbounded
chessboard. Here edge-connectivity shall be the transitive closure of the "having
a common edge" neighborship relation for squares.

We will use - where this distinction is vital - the name "polyomino graph"
for a polyomino as a system of vertices and edges, which therefore cannot have
holes of the size of a square and "polyomino area" for a polyomino as a system
of filled squares, which can have a single empty space in the center of a ring of
eight squares. Obviously the set of polyomino graphs can be embedded in the set
of polyomino areas as a subset by simply filling all possible squares.

For a systematic approach we begin by defining an "entered polyomino"
(P, a, b) as a polyomino P together with an ordered pair (a, b) of vertices
adjacent on its boundary. We name this pair the "entrance" of the entered
polyomino and the square to which it belongs the "entrance square". We further
name (P, a, b) a "corner-entered polyomino", i f - w i t h the obvious coordinate
system - vertex a has the maximal/minimal value in one coordinate among those
vertices having the maximal/minimal value in the other coordinate, i.e., i f - after
a suitable rotation or reflection of the polyomino - a lies exactly north of b, no
other vertex lies so, and no vertex lies further to the west ("a being corner" is a
necessary but not a sufficient condition for this). Evidently there are at most 8
(non-isomorphic) corner-entered polyominoes for every polyomino (which coor-
dinate first • minimal or maximal first coordinate • minimal or maximal second)
and less for symmetric cases. Corner-entered polyominoes are essentially what

On the number of square-cell configurations 271

other authors name fixed polyominoes, and those authors name polyominoes in
our sense free polyominoes.

Let (P, a,b) be an entered polyomino and let the vertex sequence
(a, b, c, d, a) describe a path around the entrance square. According to the
definition there are only three neighboring squares- N1, N2, N3- possible be-
yond the edges different from the entrance edge. This gives rise to a decomposi-
tion of the polyomino area into at most four disjoint regions:

Po: the entrance square itself;

PI: the edge-connectivity component of N~ (if present) after elimination of Po,
N2 and N3;

P2: the edge-connectivity component of N2 (if present) after elimination of P0,
PI, and N3; and

P3: the edge-connectivity component of N3 (if present) after elimination of P0,
P1, and P2;

This decomposition clearly cannot be independent of the ordering of the
neighbors. So there must be an arbitrary but then fixed convention about this
ordering. In order to encode the presence or absence of any of the components
in the three bits of an octal digit there must also be a convention about the
mapping. We found it most useful to look first between a and d with weight 4,
then between c and d with weight 1 and lastly between b and c with weight 2 (see
Fig. 2). This gives at most three smaller entered polyominoes (P~, a, d), (Pz, d, e),
and (P3, e, b).

Now we can define the "DAST tuple" of an entered polyomino (with respect
to the above convention) by induction: The only entered polyomino with one
square gets 0, the tuple consisting of a single zero, as its DAST tuple (this could
also be deduced from the induction rule which follows).

Let the DAST tuples of all entered polyominoes with at most k squares be
defined, and (P, a, b) be an entered polyomino with k + 1 squares. Then the
decomposition described above gives rise to at most three smaller entered
polyominoes which by induction have DAST tuples. We add the weights of the
neighbors to get a digit from 0 to 7 and append to it the DAST tuples of the
components (if present) ordered according to the convention. This gives the
DAST tuple of (P, a, b).

For a given polyomino we define the "DAST code" as the lexicographic
minimum of the DAST tuples corresponding to its 8 corner-entered polyomi-
noes. This definition applies equally to polyomino graphs and to polyomino
areas, and different polyominoes lead to different codes. A polyomino is com-
pletely reconstructable from its DAST code.

Like the n-tuple representation of trees [21] the DAST code is selfterminat-
ing, i.e., if a well-formed DAST code is hidden by appending digits to the end,

FIRST (4)

ENTRANCE~ d
EDGE bL_~ c

THIRD (2)

• SECOND(1)

Fig. 2. Ordering of directions and their weights (in
parentheses)

272 W.R. Miiller et al.

1 1 3 132 1325 13250 132500 1325000

Fig. 3. The step-by-step development of the DAST code for a given square animal. The label in a
square denotes the position in the DAST code of the octal digit corresponding to this square. X
indicates a square already reserved for the later processing

@
1724000 1702400

Fig. 4. The DAST tuple for another two orientations (90 °
and 180 °) of the animal with 7 squares given in Fig. 3

111110 6 7 I

1111240

-t, l , l , l ,] ,

10

1111121 4212(

-t,1213 ,1
111710010

4 1 2 ~ 1 2 [3 4

8 3 4 10 ~ 5

i 7 6 5 9 817 6

32520200 3112121100

Fig. 5. Examples of several square-cell
configurations with their DAST codes

then without further information the original end of the DAST code can be
determined. This allows an encoding of sets of independent polyominoes by
simply concatenating their DAST codes. As an example we give in Fig. 3 the
step-by-step development, obeying the convention from the above, of the DAST
code for a square animal with 7 cells.

The DAST code for the square animal in Fig. 3 is lexicographically the
smallest of all possible codes for this particular animal. For example, if we rotate
clockwise this animal for 90 ° and for 180 °, then the corresponding DAST tuples
are given by 1724000 and 1702400, respectively (see Fig. 4).

In Fig. 5 we give several additional examples of square-cell configurations
with their DAST code.

3 The computer program

The DAST code is the basis of a computer program for generating and thereby
enumerating all polyominoes with up to a given number of squares. To generate

On the number of square-cell configurations 273

all polyominoes with up to n squares the program virtually counts all tuples with
up to n octal digits (i.e., values from 0 to 7) in lexicographically ascending order .
During the counting the program tries to interpret the actual tuple as a DAST
tuple of a corner-entered polyomino and eliminates it, if it

(a) self-terminates before its end (only k - 1 one-bits in the first k digits of the
tuple) or

(b) does not self-terminate at its end or

(c) describes the same square twice or more or

(d) describes a square as a neighbor from another square but the first one from
which this would be possible or

(e) starts from a wrong square (not a corner entrance).

Actually all these tests and countings can be combined so efficiently that the
real counting through these tuples leads from one case passing all these tests to
the next such case in one step of nearly constant CPU time expense. The result
is sequential delivery of the DAST tuple for every corner-entered polyomino.
Clearly the DAST codes of all polyominoes are among them. To eliminate all
others every DAST tuple is simply compared to the DAST code of its poly-
omino. Thus, the program now delivers sequentially for every polyomino exactly
once its DAST code at an average rate of about 8 counting steps per hit (8
orientations, symmetric cases are negligibly rare) but varying extremely from 1
step to million steps per hit. The overall time expense of the algorithm is directly
proportional to the number of all squares in all generated polyominoes.

The program uses the obvious coordinate system (i.e., the axes originate at
the center of a square and run parallel to the square edges) in the plane filled
with squares, such that the square centers are in 1-1 correspondence with the
pairs of integers representing coordinate values. This allows coding of each
square in a finite section of the plane by a two-dimensional array (see Fig. 6
where '1' stands for "belongs to polyomino" and '.' for "does not").

The generating process uses 4 different states of squares (and thus four values
in the array): "free", "blocked", "member" and "reached" (the choice of these
values is merely a matter of taste). The four possible directions of propagation
to adjacent squares can be seen as index differences (1, 0), (0, 1), (- 1, 0) and
(0, - 1) .

We assume the starting (entrance) square (denoted by " S " in Fig. 7) at
position (0, 0) in the center of the array (there are also allowed positions of
squares with negative indices) and a starting direction to be (1, 0). We enforce
the starting point to be one of the 8 corner entrances by marking "blocked"
(denoted by " B " in Fig. 7) all squares at coordinates (k, l) with k = 0, l > 0
(exactly northern) or k = - 1 , l ~< 0 (southwestern). This rails off half of the
plane (see Fig. 7).

• 1 • 1 • Fig. 6. An example of a square animal and
. the corresponding two-dimensional array

274 W . R . Miiller et al.

• B

• B

• B

B •

B "

S •

Fig. 7. An array of squares with the starting square (S) and
blocked squares (B)

The starting square is marked as "member", the remaining squares being
"free". We push the starting position and direction onto a stack and enter the
recursive process, which operates as follows: If the stack is not empty, we take
position and direction of a member from the stack and make them the current
ones. We reserve the state of the three neighboring squares of the current one in
the currently allowed direction (current straightforward direction and 90 ° to the
left or to the right). Each subset of free squares among these neighbors (taking
into account the maximum number of squares required) is considered, one case
at a time. For each case we build the corresponding 3-bit binary number and
insert it as a digit in the code in generation. We mark the neighbors in the subset
as "members" and the former "free" ones as "blocked" so that they cannot be
made "members" from another side (which would lead to a code different from
the DAST code). We push the position and direction of the new "members" (if
any) onto the stack such that they can be fitted in the chosen order of directions.
Then for every case we reenter the recursion. After all cases have been inspected,
we reset the three neighbors to their reserved state and trace back one recursion
level. If the stack is empty, we have completed the generation of the DAST tuple
of a corner-entered polyomino.

For all other 7 orientations we select the right-corner entrance and compute
the DAST tuple (using suitable index transformations and the two-dimensional
array in a recursive process like that above but simpler since the only case to
consider is the maximum subset of members among the three neighboring squres,
and, using the fourth state "reached" to mark temporarily members which were
entered or reserved). If the original tuple is the smallest among the eight, we use
it further in the generating process as the DAST code of a new polyomino area.

In order to detect any holes (especially to distinguish polyomino graphs from
polyomino areas) we transform the DAST code into a boundary description [22].
We walk clockwise around every square making up the polyomino. The walk
begins at the entrance edge. For this 4n (n = the number of squares in the
polyomino) walk we eliminate all self-returning subwalks of length 2 (this
elimination can already be done during the transformation process, i.e., referring
to Fig. 2 we replace in the walk the part a-b directly by a-d-c-b and not by
a-b-a-d-c-b). If the remaining walk contains closed subwalks (or the same vertex
twice, which is easily determined using a two-dimensional array storing for every
vertex position in the plane the last edge sequence number ending at this vertex),
we have a hole (of size 1, if the sequence numbers differ by 4). If there are no
holes, we also obtain a boundary code of the polyomino (not necessarily a
canonical one).

We give a block-diagram of the computer program for generation and
enumeration of square-cell configurations in Fig. 8.

Though not very suitable for vector processors the program matches ideally
the possibilities of parallel processing hardware, as one may use as many

On the number of square-cell configurations

DAST TUPLE COMPLETE

INITIALIZE

SELECT NEXT SUBSET OF
FREE NEIGHBORS. ADD THEM

TO BE INSPECTED
TO THE STACK OF ENTRANCES

ENTER A NEW RECURSION
LEVEL TARING THE NEW

CURRENT ENTRANCE
PROM THE STACK

I SELECT NEXT I
ORIENTATION

CONSTRUCT DAST TUPLE
IN THIS ORIENTATION

DAST CODE FOUND

1
MAKE BOUNDARY CODE, CHECK FOR

HOLES, INCREASE APPROPRIATE
COUNTERS

I CHECKPOINT

LEAVE RECURSION LEVELS AS
NECESSARY TO FIND A LEVEL
WHERE NOT ALL SUBSETS OF

FREE NEIGHBORS HAVE
BEEN PROCESSED

N

PRINT RESULTS I

275

Fig. 8. A block-diagram of
the computer program

276 W . R . Miiller et al.

computers as one wishes at the same time on disjoint intervals of tuple values.
The only information needed to continue an interrupted generation process is the
last known tuple produced before the interruption.

4 Results and discussion

In Table 1 we give the numbers of square-cell configurations with up to 16
squares.

Computations have been carried out on a PC (386-AT, 40 MHz). The CPU
times needed to complete computations are also reported in the table. The
smallest polyomino area with a hole (the smallest holey square animal [2]) is a
configuration with 7 cells which is depicted in Fig. 9.

T a b l e 1. The number of square animals with n cells

Square animal

n Simply Multiply connected
connected

Single Single Several
square large large
hole hole holes

Total

Grand cpu time
total h min

1 i I

2 1 1
3 2 2
4 5 5
5 12 12
6 35 35
7 107 1 1 108
8 363 6 6 369
9 1248 36 1 37 1285

10 4460 182 13 195 4655
11 16094 884 95 979 17073
12 58973 4074 589 4663 63600
13 217117 18254 3220 21474 238591
14 805475 80008 16486 2 96496 901971 1
15 3001127 345415 79997 37 425449 3426576 4
16 11230003 1474145 374628 479 1849252 13079255 17

1
4

17
8

29
50

0.33
0.27
0.33
0.33
0.33
0.49
0.94
2.64
8.85

25.16
7.84

24.85
18.42
13.87
49.84

5.00

9 10

9 8

1 7

2 6

3 4 5

214141140

Fig. 9. The smallest holey square animal and its DAST code

Fig. 10. The smallest multiply connected square animal with a single hole of the size of two
squares and its DAST code

7 6

2 3 4

2414140

On the number of square-cell configurations 277

9 8 10 9 8 10 11

1 7 14 ~ 1 7 12

Y~
3 4 B 11 12 3 4 5 14

21415116001410 21415116012100

Fig. l l . Two smallest multiply connected
square animals with two holes of the size
of two squares and their DAST codes

1 1 1 1 1 0 111120 111210 111240 111300

1 1 1 0 0 0 112120 112140 l 1 2 q l O 112020

112500 113010 113100 113200 113q00

l160qO 117000 121120 121140 1212~0

121300 121420 121300 121600 12~2~0

124300 125020 125200 132010 132100

132q00 133000 135000 170200 321200

Fig. 12. A copy of the computer output containing
square animals with 6 cells and their DAST codes.
These animals are ordered according to the
lexicographically increasing codes

The smallest polyomino graph with a hole (the smallest multiply connected
animal with a single large hole, i.e., a hole of the size of two squares) appears in
the class of square-cell configurations with 9 cells. This square animal is shown
in Fig. 10.

There are two smallest polyomino graphs with at least two holes, i.e., two
smallest multiply connected square animals with two large holes. They appear in
the class of square-cell configurations with 14 cells. These two 14-square animals
are given in Fig. 11.

Our results in Table 1 are in full agreement with several previous computa-
tions which produce the total number of square animals [2, 11, 16, 23-25]. The
feature we emphasize in our algorithm is to get every free polyomino exactly
once, and so we spend most of the CPU time in deciding whether the actual fixed
polyomino is the right representative for the corresponding free one. This allows
us to do further operations on all free polyominoes of a given size, e.g., to
produce graphic output. In Fig. 12 we give as an example a copy of the computer
output containing the diagrams of 35 square-cell configurations (all square
animals with 6 cells).

Acknowledgements. One of us (NT) was supported by the Ministry of Science, Technology and
Informatics of the Republic of Croatia via Grant No. 1-07-159. We are thankful to the referees for
their constructive comments.

278 W.R. Mfiller et al.

References

1. Harary F, Mezey (1991) Theoret Chim Acta 79:379
2. Harary F, Palmer EM (1973) Graphical enumeration. Academic Press, NY, p 234
3. Read RC (1962) Can J Math 14:1
4. Harary F (1971) Graph theory, 2nd printing. Addison-Wesley, Reading, MA, p 194
5. Whittington SG (1987) in: Lacher RC (ed) MATH/CHEM/COMP 1987. Elsevier, Amsterdam,

p 285
6. Soteros CE, Whittington SG (1988) J Phys A 21:2187
7. Madras N, Soteros CE, Whittington SG (1988) J Phys A 21:4617
8. Whittington SG, Soteros CE, Madras N (1991) J Math Chem 7:87
9. Brak R, Guttman AJ, Whittington SG (1991) J Math Chem 8:255

10. Silverberg M, Ben-Shaul A (1987) J Chem Phys 87:3178
11. Harary F (1960) Publ Math Inst Hungarian Acad Sci 5:63
12. Palmer EM (1972) Lecture Notes in Mathematics 303:215
13. Golomb SW (1965) Polyominoes. Scribner, NY
14. Klarner DA (1965) Fibonacci Quart 3:9
15. Deles(M (1991) J Math Chem 8:3
16. Harary F (1964) Applied Combinatorics. Wiley, NY, p 200
17. Trinajsti6 N, Nikoli6 S, Knop JV, Miiller WR, Szymanski K (1991) Computational chemical

graph theory: Characterization, enumeration and generation of chemical structures by computer
methods. Simon & Schuster, NY

18. Mfiller WR, Szymanski K, Knop JV, Nikoli6 S, Trinajsti6 N (1990) J Comput Chem 11:223
19. Nikoli6 S, Trinajsti6 N, Knop JV, Miiller WR, Szymanski K (1990) J Math Chem 4:357
20. Knop JV, Miiller WR, Szymanski K, Nikoli6 S, Trinajsti6 N (1991) in: Rouvray DH (ed)

Computational chemical graph theory. Nova Science Publ, NY, p 9
21. Knop JV, Mfiller WR, Jeri6evi6 ~, Trinajsti6 N (1981) J Chem Inf Comput Sci 21:91
22. Knop JV, Szymanski K, Jeri6evi6 ~, Trinajsti6 N (1983) J Comput Chem 4:23
23. Klarner DA (1967) Can J Math 19:851
24. Read RC (1978) in: Beineke LW, Wilson RJ (eds) Selected topics in graph theory. Academic

Press, London, p 417
25. Redelmeier DH (1981) Discrete Math 36:191

